20,702 research outputs found

    Contributions of Vacuum and Plasmon Modes to the Force on a Small Sphere near a Plate

    Full text link
    The force on a small sphere with a plasma model dielectric function and in the presence of a perfectly reflecting plane is considered. The contribution of both the vacuum modes of the quantized electromagnetic field and of plasmon modes in the sphere are discussed. In the case that the plasmon modes are in their ground state, quasi-oscillatory terms from the vacuum and plasmon parts cancel one another, leading a monotonic attractive force. If the plasmon modes are not in the ground state, the net force is quasi-oscillatory. In both cases, the sphere behaves in the same way as does an atom in either its ground state or an excited state.Comment: 7 pages, no figures, talk presented at "Quantum Fields under External Conditions - 2005", Barcelona, Spain, September 200

    Future mobile satellite communication concepts at 20/30 GHz

    Get PDF
    The outline of a design of a system using ultra small earth stations (picoterminals) for data traffic at 20/30 GHz is discussed. The picoterminals would be battery powered, have an RF transmitter power of 0.5 W, use a 10 cm square patch antenna, and have a receiver G/T of about -8 dB/K. Spread spectrum modulation would be required (due to interference consideration) to allow a telex type data link (less than 200 bit/s data rate) from the picoterminal to the hub station of the network and about 40 kbit/s on the outbound patch. An Olympus type transponder at 20/30 GHz could maintain several thousand simultaneous picoterminal circuits. The possibility of demonstrating a picoterminal network with voice traffic using Olympus is discussed together with fully mobile systems based on this concept

    Casimir-Polder forces, boundary conditions and fluctuations

    Full text link
    We review different aspects of the atom-atom and atom-wall Casimir-Polder forces. We first discuss the role of a boundary condition on the interatomic Casimir-Polder potential between two ground-state atoms, and give a physically transparent interpretation of the results in terms of vacuum fluctuations and image atomic dipoles. We then discuss the known atom-wall Casimir-Polder force for ground- and excited-state atoms, using a different method which is also suited for extension to time-dependent situations. Finally, we consider the fluctuation of the Casimir-Polder force between a ground-state atom and a conducting wall, and discuss possible observation of this force fluctuation.Comment: 5 page

    GAELS Project Final Report: Information environment for engineering

    Get PDF
    The GAELS project was a collaboration commenced in 1999 between Glasgow University Library and Strathclyde University Library with two main aims:· to develop collaborative information services in support of engineering research at the Universities of Glasgow and Strathclyde· to develop a CAL (computer-aided learning package) package in advanced information skills for engineering research students and staff The project was funded by the Scottish Higher Education Funding Council (SHEFC) from their Strategic Change Initiative funding stream, and funding was awarded initially for one year, with an extension of the grant for a further year. The project ended in June 2001.The funding from SHEFC paid for two research assistants, one based at Glasgow University Library working on collaborative information services and one based at Strathclyde University Library developing courseware. Latterly, after these two research assistants left to take up other posts, there has been a single researcher based at Glasgow University Library.The project was funded to investigate the feasibility of new services to the Engineering Faculties at both Universities, with a view to making recommendations for service provision that can be developed for other subject areas

    Feasibility of using neutron radiography to inspect the Space Shuttle solid rocket booster aft skirt, forward skirt and frustum. Part 1: Summary report

    Get PDF
    The space shuttle's solid rocket boosters (SRB) include components made primarily of aluminum that are parachuted back for retrieval from the ocean and refurbished for repeated usage. Nondestructive inspection methods used on these aging parts to reduce the risk of unforeseen problems include x-ray, ultrasonics, and eddy current. Neutron radiography tests on segments of an SRB component show that entrapped moisture and naturally occurring aluminum corrosion can be revealed by neutron radiography even if present in only small amounts. Voids in sealant can also be evaluated. Three alternatives are suggested to follow-up this study: (1) take an SRB component to an existing neutron radiography system; (2) take an existing mobile neutron radiography system to the NASA site; or (3) plan a dedicated system custom designed for NASA applications

    Large Pseudo-Counts and L2L_2-Norm Penalties Are Necessary for the Mean-Field Inference of Ising and Potts Models

    Full text link
    Mean field (MF) approximation offers a simple, fast way to infer direct interactions between elements in a network of correlated variables, a common, computationally challenging problem with practical applications in fields ranging from physics and biology to the social sciences. However, MF methods achieve their best performance with strong regularization, well beyond Bayesian expectations, an empirical fact that is poorly understood. In this work, we study the influence of pseudo-count and L2L_2-norm regularization schemes on the quality of inferred Ising or Potts interaction networks from correlation data within the MF approximation. We argue, based on the analysis of small systems, that the optimal value of the regularization strength remains finite even if the sampling noise tends to zero, in order to correct for systematic biases introduced by the MF approximation. Our claim is corroborated by extensive numerical studies of diverse model systems and by the analytical study of the mm-component spin model, for large but finite mm. Additionally we find that pseudo-count regularization is robust against sampling noise, and often outperforms L2L_2-norm regularization, particularly when the underlying network of interactions is strongly heterogeneous. Much better performances are generally obtained for the Ising model than for the Potts model, for which only couplings incoming onto medium-frequency symbols are reliably inferred.Comment: 25 pages, 17 figure

    A near infrared line list for \NH: Analysis of a Kitt Peak spectrum after 35 years

    Get PDF
    A Fourier Transform (FT) absorption spectrum of room temperature NH3 in the region 7400 - 8600 cm-1 is analysed using a variational line list and ground state energies determined using the MARVEL procedure. The spectrum was measured by Dr Catherine de Bergh in 1980 and is available from the Kitt Peak data center. The centers and intensities of 8468 ammonia lines were retrieved using a multiline fitting procedure. 2474 lines are assigned to 21 bands providing 1692 experimental energies in the range 7000 - 9000 cm-1. The spectrum was assigned by the joint use of the BYTe variational line list and combination differences. The assignments and experimental energies presented in this work are the first for ammonia in the region 7400 - 8600 cm-1, considerably extending the range of known vibrational-excited statesComment: 27 pages, 6 table, 5 figures. Accepted for publication in Journal of Molecular Spectroscop

    Relic Abundances and the Boltzmann Equation

    Get PDF
    I discuss the validity of the quantum Boltzmann equation for the calculation of WIMP relic densities.Comment: 5 pages, no figures; talk given at Dark Matter 2000; an important reference is added in the revised versio

    A review of residual stress analysis using thermoelastic techniques

    No full text
    Thermoelastic Stress Analysis (TSA) is a full-field technique for experimental stress analysis that is based on infra-red thermography. The technique has proved to be extremely effective for studying elastic stress fields and is now well established. It is based on the measurement of the temperature change that occurs as a result of a stress change. As residual stress is essentially a mean stress it is accepted that the linear form of the TSA relationship cannot be used to evaluate residual stresses. However, there are situations where this linear relationship is not valid or departures in material properties due to manufacturing procedures have enabled evaluations of residual stresses. The purpose of this paper is to review the current status of using a TSA based approach for the evaluation of residual stresses and to provide some examples of where promising results have been obtained
    corecore